Quantum Anomalies: Does Cause Always Precede Effect?

Is reality really what it seems? Does cause always precede effect? Is it possible in the 21st century that quantum anomalies will make us rethink our traditional notion of reality? 
In recent years, there have been a number of startling discoveries in the field of quantum physics and mechanics. One of the most startling developments came in 2017 when a quantum experiment conducted in space showed that reality is literally what you make it. By bouncing photons off satellites, a team confirmed using ‘delayed-choice’ experiments, that something extraordinary may be happening at the boundary of relativity, which normally requires that cause precedes effect.
So far as and quantum theory goes, this is only the starting point.
Subsequent research also shows how we may be on the cusp of a whole new scientific paradigm.
Bernardo Kastrup from the Scientific American writes…

Every generation tends to believe that its views on the nature of reality are either true or quite close to the truth. We are no exception to this: although we know that the ideas of earlier generations were each time supplanted by those of a later one, we still believe that this time we got it right. Our ancestors were naïve and superstitious, but we are objective—or so we tell ourselves. We know that matter/energy, outside and independent of mind, is the fundamental stuff of nature, everything else being derived from it—or do we?
In fact, studies have shown that there is an intimate relationship between the world we perceive and the conceptual categories encoded in the language we speak. We don’t perceive a purely objective world out there, but one subliminally pre-partitioned and pre-interpreted according to culture-bound categories. For instance, “color words in a given language shape human perception of color.” A brain imaging study suggests that language processing areas are directly involved even in the simplest discriminations of basic colors. Moreover, this kind of “categorical perception is a phenomenon that has been reported not only for color, but for other perceptual continua, such as phonemes, musical tones and facial expressions.” In an important sense, we see what our unexamined cultural categories teach us to see, which may help explain why every generation is so confident in their own worldview. Allow me to elaborate.
The conceptual-ladenness of perception isn’t a new insight. Back in 1957, philosopher Owen Barfield wrote:
“I do not perceive any thing with my sense-organs alone.… Thus, I may say, loosely, that I ‘hear a thrush singing.’ But in strict truth all that I ever merely ‘hear’—all that I ever hear simply by virtue of having ears—is sound. When I ‘hear a thrush singing,’ I am hearing … with all sorts of other things like mental habits, memory, imagination, feeling and … will.” (Saving the Appearances)
As argued by philosopher Thomas Kuhn in his book The Structure of Scientific Revolutions, science itself falls prey to this inherent subjectivity of perception. Defining a “paradigm” as an “implicit body of intertwined theoretical and methodological belief,” he wrote:
“Something like a paradigm is prerequisite to perception itself. What a man sees depends both upon what he looks at and also upon what his previous visual-conceptual experience has taught him to see. In the absence of such training there can only be, in William James’s phrase, ‘a bloomin’ buzzin’ confusion.’”
Hence, because we perceive and experiment on things and events partly defined by an implicit paradigm, these things and events tend to confirm, by construction, the paradigm. No wonder then that we are so confident today that nature consists of arrangements of matter/energy outside and independent of mind.
Yet, as Kuhn pointed out, when enough “anomalies”—empirically undeniable observations that cannot be accommodated by the reigning belief system—accumulate over time and reach critical mass, paradigms change. We may be close to one such a defining moment today, as an increasing body of evidence from quantum mechanics (QM) renders the current paradigm untenable.
Indeed, according to the current paradigm, the properties of an object should exist and have definite values even when the object is not being observed: the moon should exist and have whatever weight, shape, size and color it has even when nobody is looking at it. Moreover, a mere act of observation should not change the values of these properties. Operationally, all this is captured in the notion of “non-contextuality”: the outcome of an observation should not depend on the way other, separate but simultaneous observations are performed. After all, what I perceive when I look at the night sky should not depend on the way other people look at the night sky along with me, for the properties of the night sky uncovered by my observation should not depend on theirs.
The problem is that, according to QM, the outcome of an observation can depend on the way another, separate but simultaneous, observation is performed. This happens with so-called “quantum entanglement” and it contradicts the current paradigm in an important sense, as discussed above…
Continue this story at the Scientific American
READ MORE QUANTUM NEWS AT: 21st Century Wire Quantum Files
SUPPORT OUR INDEPENDENT MEDIA PLATFORM – BECOME A MEMBER @21WIRE.TV